

Validating the LLAMA aptitude tests

Vivienne Rogers, Tom Barnett-Legh, Clare Curry & Emma Davie with Paul Meara

Outline

- What are the LLAMA tests?
- Research Questions.
- Methodology (general data collection)
- Relevant background
- Results and Discussion
- Overall conclusions and next steps

Aptitude tests

- MLAT: Modern Language Aptitude test
 - Carroll & Sapon (1959)
 - Four components:
 - the ability to learn words out of context,
 - grammatical sensitivity,
 - phonetic sensitivity
 - inductive learning ability
- PLAB: Pimsleur Modern Language Aptitude Battery
 - o Pimsleur (1966)
 - o vocabulary size in English is taken as a measure of overall verbal ability,
 - language analysis measures
 - sound discrimination measures auditory skills and sound-symbol association
 - a measure of general interest in languages (motivation)
- DLAB: Defense Language Aptitude Battery
 - Peterson & Al-Haiq (1976)

Rationale

- LLAMA = free, loosely based on MLAT.
- Developed by Prof Paul Meara
- www.lognostics.co.uk/tools/llama/index.htm
- Increasingly used in research projects.
- Has not been validated.
- Grañena (2013): internal consistency but two forms of aptitude
 - Gender and Language neutrality

What is LLAMA?

Not designed only for English L1.

Four components:

LLAMA B = vocabulary measure
 MLAT paired associates task

(not a LAMA)

- LLAMA D = sound recognition (implicit learning)
 Not in MLAT, based on Service's work
- LLAMA E = sound-symbol correspondence
 MLAT phonetic script subtest
- LLAMA F = grammatical inferencing
 - Explicit inductive learning ability

Our 2013-4 Study

- Examined:
 - gender, age, formal education, playing logic puzzles, language neutrality and differences in test timings.
- Methodology:
 - o 164 participants at standard length
 - 65 participants at altered lengths
 - o Aged 10-75
- Results:
 - o Comparable results to Grañena (2013)
 - Age ☑ but Language neutrality □ ? (LLAMA E)
 - Significant effect of formal education and playing logic puzzles on LLAMA E (sound-symbol)
 - Default timings for B & E appear optimal.
 - LLAMA F timing could be decreased.

Limitations

- Over-dominance of UG, monolingual participants.
- Some of the groups were small, e.g. age effects, language neutrality.

Research Questions

Follow-up to Rogers et al (2014) study:

- 1. Are the LLAMA tests language neutral? a. i.e. Does your L1 have an influence on your final scores?
- 2. What effect does L2/bilingual status have on LLAMA scores?
- 3. Does age affect aptitude as measured by LLAMA?
- 4. How much of the variance in the scores do the individual differences identified account for?
 - a. Gender, L1, L2 status, education level, logic puzzles, age

Methodology

- Most of the data collected by final year BA students for their dissertations.
- Data also from international students on our pre-sessional course and by Khaled Alamri (PhD student).
- Data collected individually or in large computer sessions.
- Background questionnaire.
- Total number of participants = 240.

RQ1: Previous research

- Several studies suggest the degree of distance between an L1 and an L2 plays a fundamental role in word processing and retention in an L2
 - (Gholamain & Gera, 1999; Hamada & Koda, 2008; Green & Meara, 1987; Wong and Pyun, 2012)
- MLAT = designed for use with native English speakers.
 - o used with a wide range of languages.
- If the language script of the L1 can influence the acquisition of the L2, then the question arises if the L1 script of the learner influences their aptitude scores.

RQ1: Background

Does your L1 have an influence on your final scores?

- LLAMA B and LLAMA F have roman alphabet letters as part of the test.
- Compare English (n=102), Arabic (n=32) and Chinese (n=57) speakers.
- Arabic: consonant alphabetic script (common ancestor with Roman scripts = North Semintic)
 مرجبا

RQ1: Hypotheses

- 1. English native speakers will outperform Chinese and Arabic native speakers on LLAMA B & F as the script will not require such a strong processing load for them.
- 2. Arabic speakers will outperform Chinese speakers as it is an alphabetic script with a common ancestor to the Roman alphabet.

RQ1: Language Neutrality

Language Neutrality

RQ1: Language Neutrality

- LLAMA B (vocabulary):
 - Chinese and Arabic participants outperformed the English participants (p<.05).
 - Hypothesis 1 disconfirmed: non-Roman alphabet participants are not negatively affected.
 - No difference between Chinese and Arabic participants
 - Hypothesis 2 disconfirmed as Arabic participants were not advantaged over Chinese participants.
- LLAMA F (grammatical inferencing)
 - Same results as for LLAMA B.
 - Hypotheses disconfirmed.
- LLAMA D (implicit learning)
 - Arabic participants significantly outperformed English participants.
- LLAMA E (sound-symbol correspondence)
 - Chinese participants performed significantly worse than English.
 - Also lower than Arabic but not significant.

LLAMA E question?

- Lower scores by Chinese participants in LLAMA E.
- Is there a problem with the test?
- Are there contrasts that are allophonic in Chinese?
- Consonants in LLAMA E:
 - [p],[b],[t],[d],[k],[g],[m],[n]
- Vowels in LLAMA E
 - o a:, i:, u:

 None of these are allophonic in Chinese (Swan & Smith (2001).

English speaker performance?

- English native speakers are outperformed in:
 - LLAMA B (vocabulary)
 - o LLAMA D (incidental)
 - LLAMA F (grammatical inferencing)
- Is this because some of the English speakers were monolingual?

RQ2: Previous research

• Training effect on aptitude

o (Grigorenko et al, 2000; McLaughlin, 1990; Sternberg, 2002)

- Aptitude development significantly correlates to language experience
 - May change over time
 - (Eisenstein, 1980; Kormos, 2013; Sáfár & Kormos, 2008; Sawyer, 1992; Sparks, Ganschow, Fluharty & Little, 1995; Thompson, 2013).
- Multilinguals more able to adjust their L2 learning strategy to facilitate specific language components
 - o but not more successful overall.
 - Nayak, Hansen, Krueger and McLaughlin (1990)

RQ2: Background

What effect does L2/bilingual status have on LLAMA scores?

- Compare monolingual, L2ers and bilinguals
 - o self identified as bilingual and began learning both languages before 5
- Hypothesis 1: L2 learners will outperform the other groups as they have developed conscious strategies
- Hypothesis 2: Bilinguals will outperform monolinguals as they are more aware of language

RQ2: L2 status

RQ2: L2 status

- LLAMA B (vocabulary)
 - \circ L2ers significantly outperformed monolinguals and bilinguals (p<.05)
 - No difference between mono- and bilinguals.
- LLAMA D (implicit learning)
 - No significant differences between any groups.
- LLAMA E (sound-symbol)
 - No significant differences between any groups.
- LLAMA F (grammatical inferencing)
 - L2ers significantly outperformed the monolinguals (p<.05) but not the bilinguals (p-.467).
 - No difference between the mono- and bilinguals.
- Hypothesis 1 confirmed for LLAMA B and LLAMA F.
 - Not surprising as vocabulary and grammar learning form part of L2 curriculum.
- Hypothesis 2: not confirmed
 - Bilinguals outperformed monolinguals in all tests but not significant.

RQ3: Previous research

- Several different views on age and aptitude:
- Abrahamsson & Hyltenstam (2008) argue that aptitude is only a relevant factor for learners over the age of 15.
 - Grañena and Long (2013a) show age-effects first influence L2 phonology, then lexis, collocation and morphosyntax.
- Muñóz (2014) investigated 48 bilingual Spanish-Catalan Primary school learners of English aged 10-11 and 11-12.
 - o significant correlations with all components.
 - Thus, providing support for the notion of language aptitude in younger learners.

RQ3: Background

Does age affect aptitude as measured by LLAMA?

- 2014 study on LLAMA B and LLAMA E found no significant differences but a different profile of results. This time looking at vocabulary and implicit learning (LLAMA D).
- LLAMA tests not originally designed for use with children (Meara p.c.)
- Separate MLAT for students aged 8-12
- Hypothesis 1: no difference on LLAMA B vocabulary scores (vocabulary learning is life-long).
- Hypothesis 2: younger participants will outperform older participants (implicit learning)

RQ3: results

Subset of 104 participants (matched, age and gender across age groups)

RQ3: Results

- LLAMA B (vocabulary)
 - \circ 10-11 year olds performed significantly worse than both older groups (p<.05)
 - No significant differences between 20-21s and 30-70s.
 - Hypothesis 1: Disconfirmed. Younger participants performed worse.

• LLAMA D (implicit)

- 10-11 years olds performed significantly worse than 20-21s (p<.05) but not than 30-70s.
- No significant difference between older groups.
- Hypothesis 2: disconfirmed. Younger group did not perform better than either of the two older groups.
- However, 10-11 year olds were able to do the tests. No conceptual or interface problems.
- But may need different norms?

RQ4: Background

How much of the variance in the scores do the individual differences identified account for?

- a. Gender, L1, L2 status, education level, logic puzzles, age
- These additional factors were examined in the 2014 study.
- Information collected through background questionnaire.

RQ4: LLAMA B

- Multiple regression, n=240
- Factors: L1, age, L2 status, educational level, gender, logic games
- Overall factors: R² = 12.6% of overall variance
 Adjusted R² = 9.9%
- Individual independent variables:
 - Only L2 status reaches significance.
 - Beta value = -.240, p = .001
 - Contribution to overall variance = 4.8%

RQ4: LLAMA D

- Multiple regression, n=240
- Factors: L1, age, L2 status, educational level, gender, logic games
- Overall factors: R² = 8% of overall variance
 Adjusted R² = 5.2%
- Individual independent variables:
 - Language neutrality and gender reach significance.
 - Language neutrality:
 - Beta value = .144, p = .046
 - Contribution to overall variance = 1.9%
 - o Gender
 - Beta value = .178, p = .010
 - Contribution to overall variance = 3.2%

RQ4: LLAMA E

- Multiple regression, n=211
- Factors: L1, age, L2 status, educational level, gender, logic games
- Overall factors: $R^2 = 4.5\%$ of overall variance
 - Adjusted $R^2 = 1.6\%$
- Individual independent variables:
 - No variable reaches significance.
 - Highest beta value = education level
 - 1.6% of variance

RQ4: LLAMA F

- Multiple regression, n=211
- Factors: L1, age, L2 status, educational level, gender, logic games
- Overall factors: R² = 8.1% of overall variance
 Adjusted R² = 5.3%
- Individual independent variables:
 - L2 status and education level reach significance.
 - L2 status:
 - Beta value = -.201, p = .008
 - Contribution to overall variance = 3.4%
 - Education level
 - Beta value = .186, p = .016
 - Contribution to overall variance = 2.8%

RQ4: implications

- The factors examined so far do not account for much of the variance between scores either together or individually.
- Learning a L2 seems to be advantageous for the tests.
 - Need to be aware if using for projects.
- Need to consider IQ and WM.
 - Previous research (Wesche, 1981) has found overlap between MLAT and IQ.

Next steps

- 1. LLAMA B is now online but others are in development.
 - a. LLAMA E is negatively eschewed so presentation will be tweaked.
- 2. Examine WM and IQ scores.
 - WM measure attempted with 15 participants but incorrectly administered.
- 3. Pilot data collected to examine if LLAMA scores predict outcomes in intensive 2 week Latin class (6 participants).
 - Includes motivation (LLOS) and anxiety (FLCAS) questionnaires
- Extension to longer class (1 term/1 academic year, n=40+)

Thank you!

Any questions?

RQ1: Language Neutrality

		LLAMA B	LLAMA D	LLAMA E	LLAMA F
English n=107	Mean	45.28	27.94	68.32	36.40
	s.d	(21.608)	(16.653)	(29.065)	(24.618)
Chinese n=56	Mean	55.89	31.16	56.34	46.96
	s.d	(27.288)	(24.458)	(28.034)	(25.984)
Arabic n=32	Mean	53.75	34.38	62.19	49.06
	s.d	(24.163)	(15.748)	(25.207)	(24.933)

RQ2: L2 status

		LLAMA B	LLAMA D	LLAMA E	LLAMA F
L2er (n=142)	Mean	53.24	30.85	63.31	45.25
	s.d.	24.234	19.902	28.434	27.310
monolingual n=46	Mean	39.57	25.65	65.11	31.20
	s.d.	20.759	17.720	28.800	20.033
bilingual n=23	Mean	42.39	32.83	66.52	38.26
	s.d.	22.303	14.834	30.243	25.876

RQ3: Age

		LLAMA B	LLAMA D
10-11	Mean	28.67	18.50
n–30	s.d.	14.910	13.528
20-21	Mean	45.68	29.32
n=44	s.d.	21.529	17.206
30-70	Mean	44.33	24.50
n=30	s.d.	24.380	17.536