

Testing the LLAMA aptitude tests

Vivienne Rogers

Outline

- Background
- What are the LLAMA tests?
- Research Questions.
- Methodology (general data collection)
- Relevant background
- Results and Discussion
- Overall conclusions
- pilot Latin data?

Aptitude tests

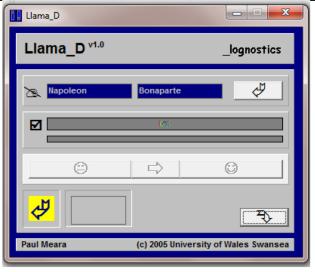
- MLAT: Modern Language Aptitude test
 - o Carroll & Sapon (1959)
 - o Four components:
 - the ability to learn words out of context,
 - grammatical sensitivity,
 - phonetic sensitivity
 - inductive learning ability
- PLAB: Pimsleur Modern Language Aptitude Battery
 - o Pimsleur (1966)
 - o vocabulary size in English is taken as a measure of overall verbal ability,
 - language analysis measures
 - o sound discrimination measures auditory skills and sound-symbol association
 - o a measure of general interest in languages (motivation)
- DLAB: Defense Language Aptitude Battery
 - o Peterson & Al-Haiq (1976)

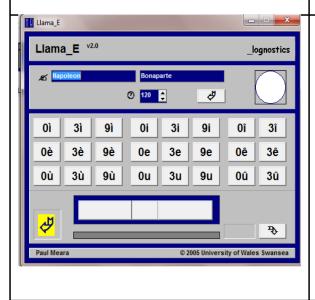
Rationale

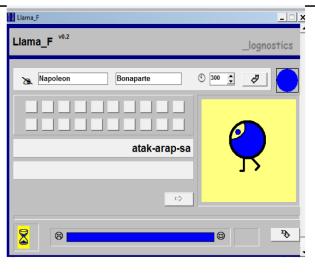
- LLAMA = free, loosely based on MLAT.
- Developed by Prof Paul Meara
- www.lognostics.co.uk/tools/llama/index.htm
- Increasingly used in research projects.
 - Google Scholar lists nearly a thousand papers which have cited the II AMA tests
- Has not been validated.

What is LLAMA?

Not designed only for English L1.


(not a LAMA)


Four components:


- LLAMA B = vocabulary measure
 - MLAT paired associates task
- LLAMA D = sound recognition (implicit learning)
 - Not in MLAT, based on Service's work
- LLAMA E = sound-symbol correspondence
 - MLAT phonetic script subtest
- LLAMA F = grammatical inferencing
 - Explicit inductive learning ability

LLAMA Subtests

Previous validation research

- Grañena (2013):
- Internal consistency, Gender and Language neutrality
- n=187 aged 18-39
- Spanish, Chinese and English
- internal consistency but two forms of aptitude
 - LLAMA D measuring something different to the others

2013-14 students

Louise Fallon, Rosa Thomas & Emily Keey

Research Questions 2013-14

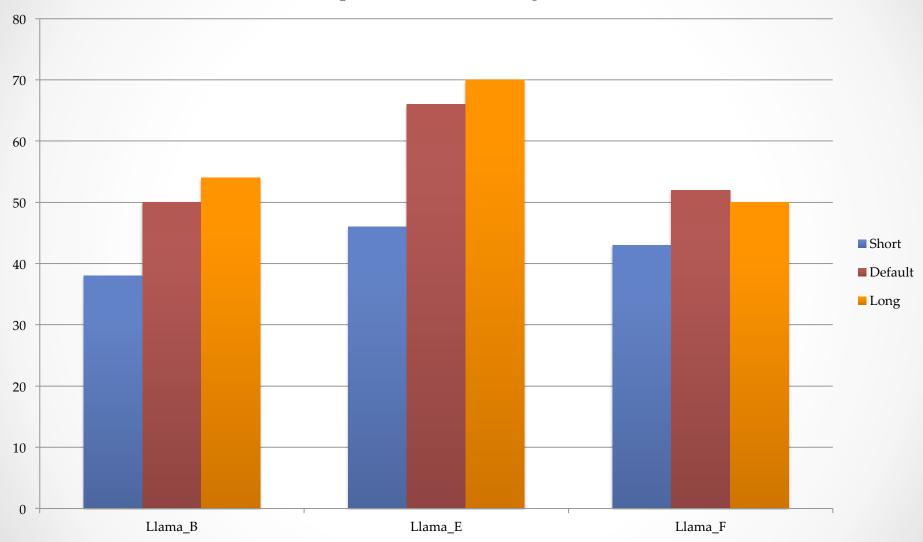
- What is the role of gender?
- Are the LLAMA tests language neutral?
- What is the role of age?
- What is the role of formal education qualifications?
- Does playing logic puzzles affect LLAMA scores?
- 6. What difference would changing the test timings make to scores?

Methodology

- 164 participants at standard length
- 65 participants at altered lengths
- Aged 10-75
- Limesurvey background questionnaire
- Data collected via individual and drop in sessions.

RQ6: Timings

- Default timings:
 - LLAMA B, D & E = 2 mins
 - \circ LLAMA F = 5 mins
- LLAMA D not included (recording)
- Shorter condition: minus 1 min
- Longer condition: plus 1 min
- Participants (n=98):
 - o 32 short timing
 - 33 default timing
 - o 33 longer timing



Group Differences in Average Test Score

Stats for Timings

- not normally distributed (non-parametric)
- Overall timing effects for:
 - o LLAMA B (vocab) p=.011
 - LLAMA E (sound symbol) p=.004
- Within groups
 - Significant difference between default time and shorter time (LLAMA B & E)
 - Significant difference between shorter time and longer time (LLAMA E)
- No effect of timing on LLAMA F
 - o even 4 mins may be too long
 - students seem to have finished early

Co-variates?

- Participants matched gender, age, education and LS status
- Effect for L2 status on changed times with LLAMA B (vocab) & E (sound-symbol)
 - Monolingual scores more affected in B & E.
- Males more affected by changes than females for B & E.

Overall 2013-4 results

Results:

- Comparable results to Grañena (2013)
 - Age
 ✓ but Language neutrality
 ? (LLAMA E)
- Significant effect of formal education and playing logic puzzles on LLAMA E (sound-symbol)
- Default timings for B & E appear optimal.
- LLAMA F timing could be decreased.

Limitations

- Over-dominance of UG, monolingual participants.
- Some of the groups were small, e.g. age effects, language neutrality.

2014-15 Students

Clare Curry

Tom Barnett-Legh

Emma Davie

Research Questions 2014-15

Follow-up to previous study:

- 1. Are the LLAMA tests language neutral?
 - a. i.e. Does your L1 have an influence on your final scores?
- 2. What effect does L2/bilingual status have on LLAMA scores?
- 3. Does age affect aptitude as measured by LLAMA?

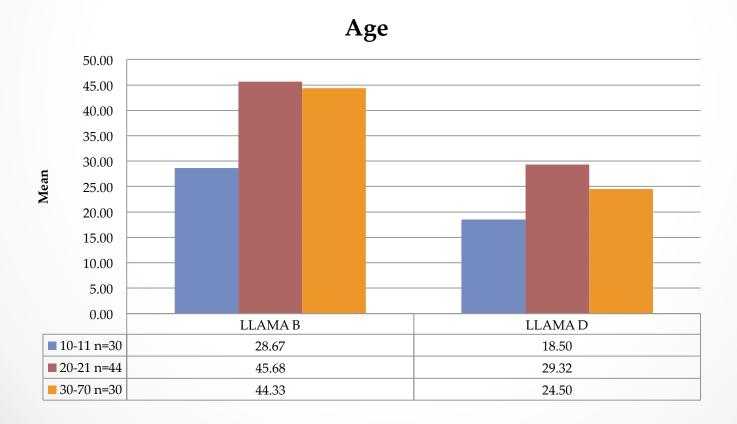
Methodology

- Most of the data collected by final year BA students for their dissertations.
- Data also from international students on our presessional course and by Khaled Alamri (PhD student).
- Data collected individually or in large computer sessions.
- Background questionnaire.
- Total number of participants = 240.

RQ3: Previous research

- Several different views on age and aptitude:
- Abrahamsson & Hyltenstam (2008) argue that aptitude is only a relevant factor for learners over the age of 15.
 - Grañena and Long (2013a) show age-effects first influence L2 phonology, then lexis, collocation and morphosyntax.
- Muñóz (2014) investigated 48 bilingual Spanish-Catalan Primary school learners of English aged 10-11 and 11-12.
 - o significant correlations with all components.
 - Thus, providing support for the notion of language aptitude in younger learners.

RQ3: Background


Does age affect aptitude as measured by LLAMA?

- 2014 study on LLAMA B and LLAMA E found no significant differences but a different profile of results. This time looking at vocabulary and implicit learning (LLAMA D).
- LLAMA tests not originally designed for use with children (Meara p.c.)
- Separate MLAT for students aged 8-12
- Hypothesis 1: no difference on LLAMA B vocabulary scores (vocabulary learning is life-long).
- Hypothesis 2: younger participants will outperform older participants (implicit learning)

20

RQ3: results

 Subset of 104 participants (matched, age and gender across age groups)

RQ3: Results

- LLAMA B (vocabulary)
 - \circ 10-11 year olds performed significantly worse than both older groups (p<.05)
 - o No significant differences between 20-21s and 30-70s.
 - o Hypothesis 1: Disconfirmed. Younger participants performed worse.
- LLAMA D (implicit)
 - o 10-11 years olds performed significantly worse than 20-21s (p<.05) but not than 30-70s.
 - No significant difference between older groups.
 - Hypothesis 2: disconfirmed. Younger group did not perform better than either of the two older groups.
- However, 10-11 year olds were able to do the tests. No conceptual or interface problems.
- But may need different norms?

Bringing it all together

- Participants: n=404
 - o (not including the different timings participants)
- Research questions:
- 1. Are the LLAMA tests language neutral?
- 2. What is the effect of monolingualism on LLAMA scores?
- 3. How much of LLAMA test score variance do the individual factors measured account for?

RQ1: Previous research

- Several studies suggest the degree of distance between an L1 and an L2 plays a fundamental role in word processing and retention in an L2
 - (Gholamain & Gera, 1999; Hamada & Koda, 2008; Green & Meara, 1987; Wong and Pyun, 2012)
- MLAT = designed for use with native English speakers.
 - used with a wide range of languages.
- If the language script of the L1 can influence the acquisition of the L2, then the question arises if the L1 script of the learner influences their aptitude scores.

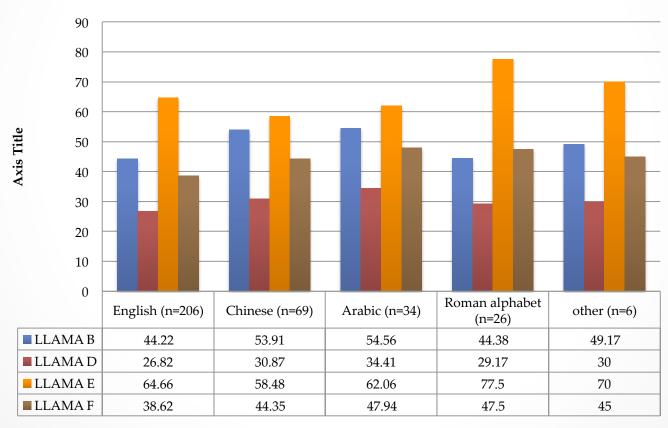
RQ1: Background

Does your L1 have an influence on your final scores?

- LLAMA B and LLAMA F have roman alphabet letters as part of the test.
- Chinese: morphosyllabic (Tolchinsky et al, 2011: 1598) or logographic (Baron, 2000: 2)
 - 0 您好
- Arabic: consonant alphabetic script (common ancestor with Roman scripts = North Semitic)
 - مرحبا ٥

RQ1: Hypotheses

- 1. English native speakers will outperform Chinese and Arabic native speakers on LLAMA B & F as the script will not require such a strong processing load for them.
- 2. Arabic speakers will outperform Chinese speakers as it is an alphabetic script with a common ancestor to the Roman alphabet.
- Compare English (n=206), Chinese (n=69), Arabic (n=34), other Roman alphabet (n=24), other (n=6)
- Total n=339



RQ1: Language Neutrality

Chart Title

RQ1: Language Neutrality

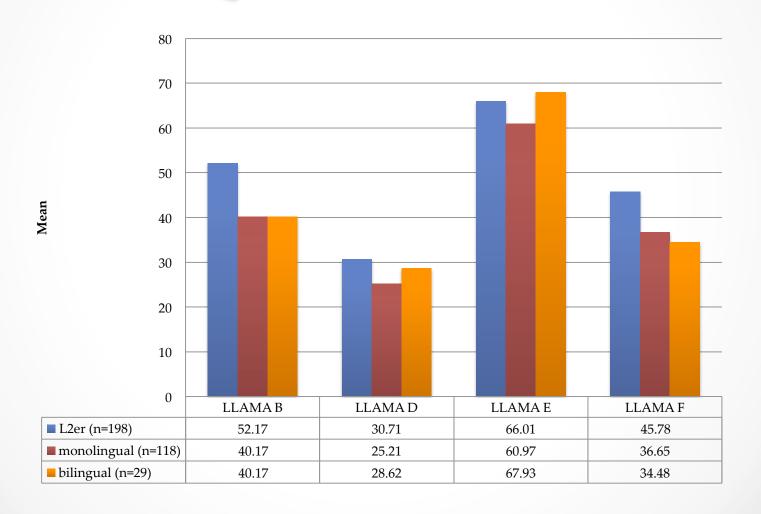
- No significant differences for any test.
- Possibly due to large differences in group size and large standard deviations.

English speaker performance?

- English native speakers are outperformed in:
 - LLAMA B (vocabulary)
 - LLAMA D (incidental)
 - LLAMA F (grammatical inferencing)
- Is this because some of the English speakers were monolingual?

RQ2: Previous research

- Training effect on aptitude
 - o (Grigorenko et al, 2000; McLaughlin, 1990; Sternberg, 2002)
- Aptitude development significantly correlates to language experience
 - May change over time
 - (Eisenstein, 1980; Kormos, 2013; Sáfár & Kormos, 2008; Sawyer, 1992; Sparks, Ganschow, Fluharty & Little, 1995; Thompson, 2013).
- Multilinguals more able to adjust their L2 learning strategy to facilitate specific language components
 - but not more successful overall.
 - Nayak, Hansen, Krueger and McLaughlin (1990)


RQ2: Background

What effect does L2/bilingual status have on LLAMA scores?

- Compare monolingual, L2ers and bilinguals
 - o self identified as bilingual and began learning both languages before 5
- Hypothesis 1: L2 learners will outperform the other groups as they have developed conscious strategies
- Hypothesis 2: Bilinguals will outperform monolinguals as they are more aware of language

RQ2: L2 status

RQ2: L2 status

- LLAMA B (vocabulary)
 - L2ers significantly outperformed monolinguals and bilinguals (p<.05)
 - No difference between mono- and bilinguals.
- LLAMA D (implicit learning)
 - L2ers significantly outperform monolinguals (p<.05)
 - but not the bilinguals (p=.065)
- LLAMA E (sound-symbol)
 - No significant differences between any groups.
- LLAMA F (grammatical inferencing)
 - L2ers significantly outperformed the monolinguals (p<.05)
 - but not the bilinguals (p=.467).
 - No difference between the mono- and bilinguals.
- Hypothesis 1 confirmed for LLAMA B and LLAMA F.
 - Not surprising as vocabulary and grammar learning form part of L2 curriculum.
- Hypothesis 2: not confirmed
 - Bilinguals outperformed monolinguals in all tests (except B) but not significant.

RQ3: Background

How much of the variance in the scores do the individual differences identified account for?

Examined: Gender, L1 (language neutrality), L2 status, education level, logic puzzles, age

 Information collected through background questionnaire (both years).

RQ3: LLAMA B

- Multiple regression, n=404
- Overall factors: $R^2 = 9.1\%$ of overall variance
 - o Adjusted $R^2 = 7.6\%$
- Individual independent variables:
 - Only L2 status reaches significance.
 - o Beta value = -.250, p < .05
 - Contribution to overall variance = 6.0%

RQ3: LLAMA D

- Multiple regression, n=375
- Overall factors: $R^2 = 4.8\%$ of overall variance
 - o Adjusted $R^2 = 3.1\%$
- Individual independent variables:
 - L2 status and gender reach significance. Language neutrality (p=.055)
 - o L2 status:
 - Beta value = .136, p = .012
 - Contribution to overall variance = 1.8%
 - o Gender
 - Beta value = .116, p = .030
 - Contribution to overall variance = 1.3%

RQ3: LLAMA E

- Multiple regression, n=370
- Overall factors: $R^2 = 3.4\%$ of overall variance
 - o Adjusted $R^2 = 1.8\%$
- Individual independent variables:
 - Playing logic games reaches significance.
 - Highest qualification: p=.056
 - Logic games:
 - Beta value = .152, p = .004
 - Contribution to overall variance = 2.3%

RQ3: LLAMA F

- Multiple regression, n=346
- Overall factors: $R^2 = 6.6\%$ of overall variance
 - o Adjusted $R^2 = 4.9\%$
- Individual independent variables:
 - L2 status and language neutrality reach significance.
 - o L2 status:
 - Beta value = -.165, p = .002
 - Contribution to overall variance = 2.6%
 - Language neutrality
 - Beta value = .114, p = .036
 - Contribution to overall variance = 1.3%

RQ3: implications

- The factors examined so far do not account for much of the variance between scores either together or individually.
- Learning a L2 seems to be advantageous for the tests.
 - Need to be aware if using for projects.
- Need to consider IQ and WM.
 - Previous research (Wesche,1981) has found overlap between MLAT and IQ.

Next steps

- 1. LLAMA B is now online but others are in development.
 - a. LLAMA E is negatively skewed so presentation will be tweaked.
- 2. Examine WM and IQ scores.
 - WM measure attempted in 2014-15 with 15 participants but incorrectly administered.
- 3. Pilot data collected to examine if LLAMA scores predict outcomes in intensive 2 week Latin class (6 participants).
 - Includes motivation (LLOS) and anxiety (FLCAS) questionnaires
- 4. Extension to longer class (1 term/1 academic year, n=40+)

Thank you!

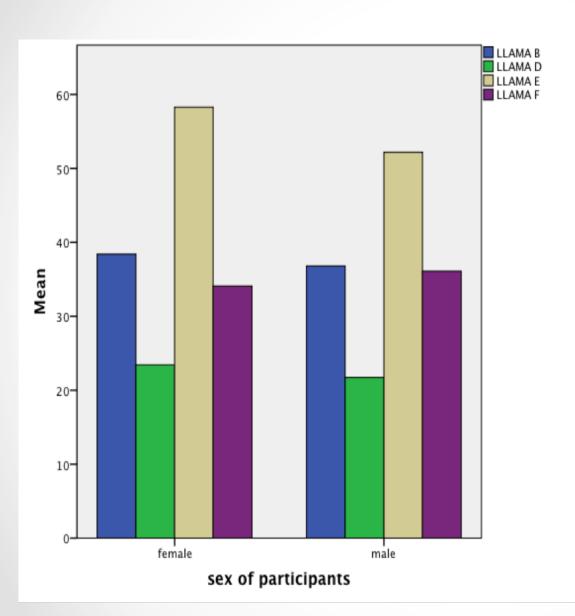
Any questions?

2013-14 results

Results: Gender

 Only students aged over 18 who had taken all the tests were included (n=135)

	LLAMA	LLAMA	LLAMA	LLAMA
	B	D	E	F
Male (n=63)	36.80	21.71	52.18	36.11
	(24.708)	(18.217)	(35.756)	(29.391)
Female (n=72)	38.40	23.44	58.27	34.10
	(25.859)	(19.182)	(34.438)	(28.285)

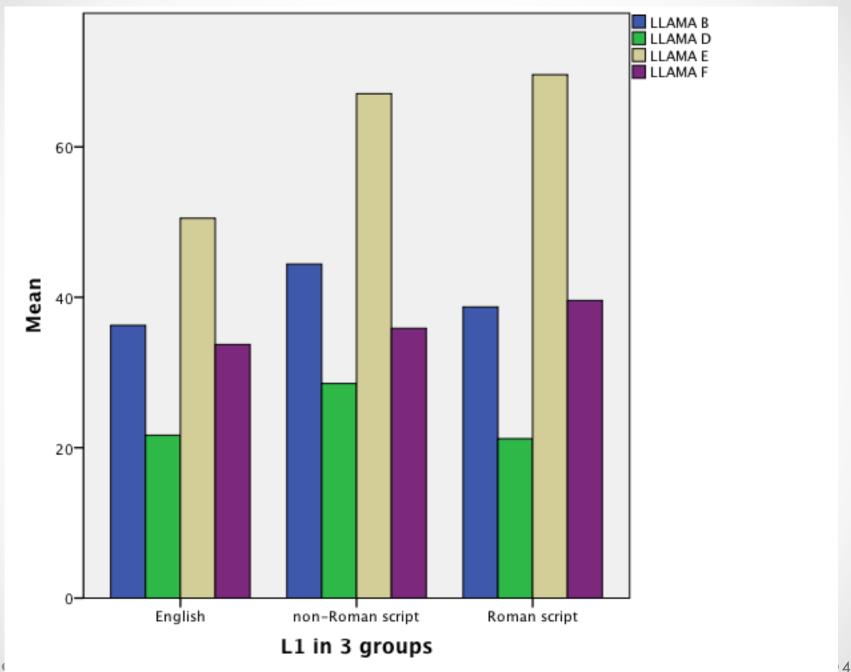


Gender differences chart

- No significant effect of gender on any component.
- LLAMA B (vocabulary)
 t(133)=.367 p=.729
- LLAMA D (sound rec)
 t(133)=.536 p=.904
- LLAMA E (sound/sym) t(133)=1.005 p=.488
- LLAMA F (grammar) t(133)=-. 404 p=.456
- Same result at Grañena (2013)

RQ2: Language neutrality

- 135 participants over 18, took all tests
- 18 different L1s
- Coded into 3 groups:
 - o English (n=99)
 - Non Roman script (e.g. Chinese, Arabic) (n=17)
 - Roman script (e.g. French, German) (n=18)



Language neutrality results

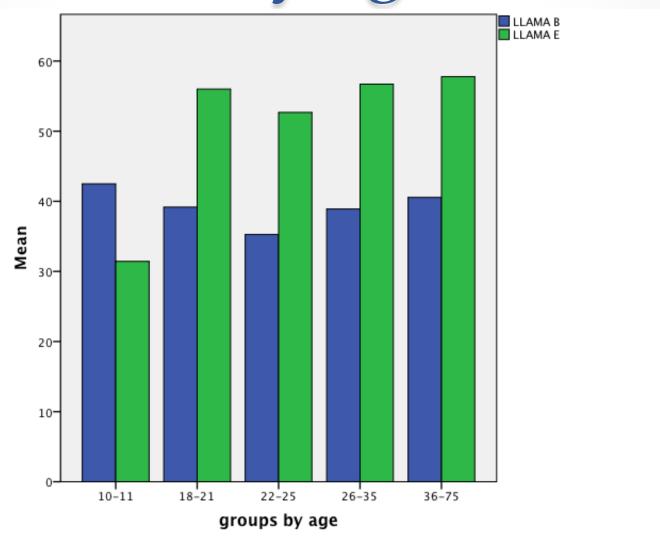
	LLAMA B	LLAMA D	LLAMA E	LLAMA F
English	38.28	21.66	50.51	33.71
(n=99)	(25.013)	(18.133)	(35.623)	(28.962)
Non-Roman script (n=17)	44.71	28.53	67.06	35.88
	(25.488)	(20.673)	(21.727)	(26.706)
Roman script (n=18)	38.70	21.19	69.61	39.58
	(27.347)	(19.577)	(37.017)	(29.802)

- Significant effect of L1 type on LLAMA E (sound-symbol) F(2,131)=3.505 p=.033
- Non-roman script significantly outperformed English group (p=.036)
- L1 interference?

RQ3: Age effects

- Total participants = 157
- LLAMA B (vocabulary) and E (sound/symbol) tested.
- NB: LLAMA not designed for use with children.

	10-11	18.21	22-25	26-35	36-75
	(n=14)	(n=66)	(n=32)	(n=18)	(n=27)
LLAMA	42.50	39.16	35.27	38.91	40.56
B	(17.623)	(26.685)	(28.158)	(23.769)	(30.551)
LLAMA	31.43	56.01	52.67	56.72	57.78
E	(19.158)	(35.443)	(36.556)	(35.562)	(30.551)

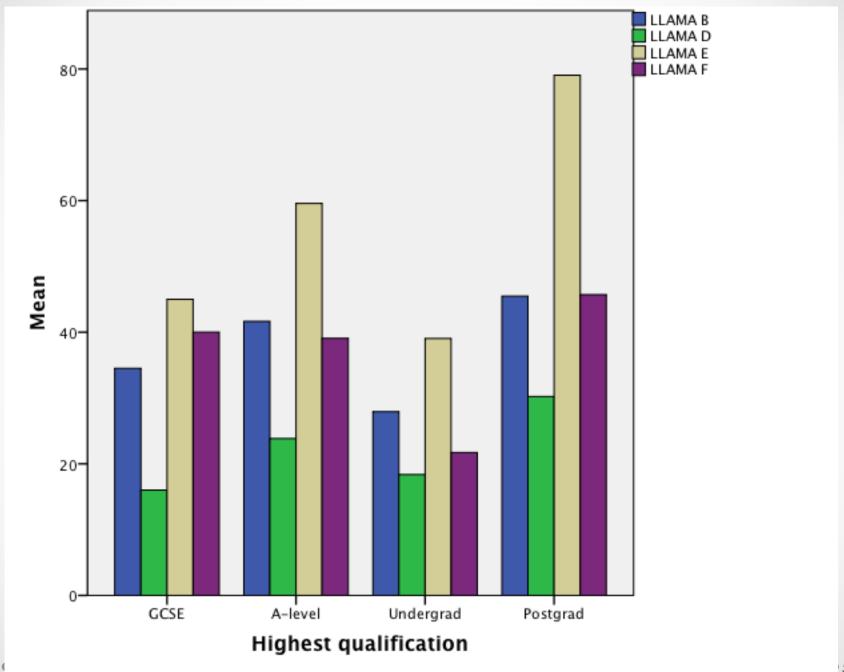


Results by age chart

Stats for Age

- No overall significant effects for age with vocabulary (B) or sound-symbol (E).
- However, younger groups profile differently.
- Post-hoc Games-Howell shows significant differences between 10-11s and 18-21s (p=.007) and 36-75s (p=.014).

• 50



RQ4: Formal education

- 135 learners divided into 4 groups
- Asked for their highest qualification

	LLAMA B	LLAMA D	LLAMA E	LLAMA F
Aged 16 (n=10)	34.50	16.00	45.00	40.00
	(18.174)	(13.499)	(38.658)	(18.856)
Aged 18 (n=64)	41.66	23.84	59.56	39.08
	(25.120)	(18.345)	(31.237)	(29.934)
UG degree	27.93	18.37	39.03	21.71
(n=40)	(25.819)	(19.682)	(38.220)	(25.892)
MA/ PhD (n=21)	45.48	30.24	79.05	45.71
	(37.66)	(17.852)	(20.225)	(26.376)

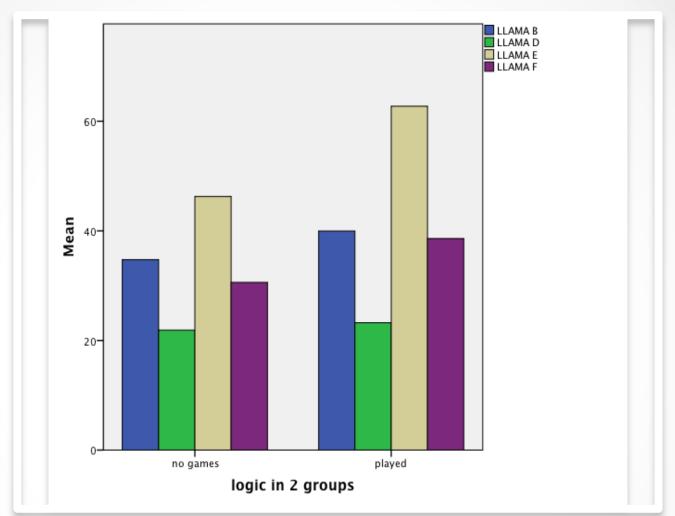
51

Formal qualifications results

- One way ANOVA
- Significant effect for highest formal qualification for:
 - o Vocabulary (B) F(3,131)=3.413 p=.019
 - Sound/symbol (E) F(3,131)=7.684 p=.000
 - Grammar inferencing (F) F(3,131)=4.724 p=.004
- Sound recognition (D) approached significance
 - o F(3,131)=2.439 p=.067

RQ5: Logic games

- 135 participants over 18, all tests
- Divided into two groups


	LLAMA	LLAMA	LLAMA	LLAMA
	B	D	E	F
No games (n=60)	35.75 (23.780)	21.88 (18.494)	46.28 (32.939)	30.58 (21.177)
Played	39.98	23.24	62.75	38.60
(n=75)	(26.287)	(18.944)	(35.194)	(29.587)

• Significant effect for playing logic puzzles with LLAMA E (sound-symbol) t(133)=-2.781 p=.006.

2014-15 results

RQ1: Language Neutrality

		LLAMA B	LLAMA D	LLAMA E	LLAMA F
English	Mean	45.28	27.94	68.32	36.40
n=107	s.d	(21.608)	(16.653)	(29.065)	(24.618)
Chinese	Mean	55.89	31.16	56.34	46.96
n=56	s.d	(27.288)	(24.458)	(28.034)	(25.984)
Arabic n=32	Mean	53.75	34.38	62.19	49.06
	s.d	(24.163)	(15.748)	(25.207)	(24.933)

RQ2: L2 status

		LLAMA B	LLAMA D	LLAMA E	LLAMA F
L2er (n=142)	Mean	53.24	30.85	63.31	45.25
	s.d.	24.234	19.902	28.434	27.310
monolingual n=46	Mean	39.57	25.65	65.11	31.20
	s.d.	20.759	17.720	28.800	20.033
bilingual n=23	Mean	42.39	32.83	66.52	38.26
	s.d.	22.303	14.834	30.243	25.876

RQ3: Age

		LLAMA B	LLAMA D
10-11 n=30	Mean	28.67	18.50
11 00	s.d.	14.910	13.528
20-21 n=44	Mean	45.68	29.32
	s.d.	21.529	17.206
30-70 n=30	Mean	44.33	24.50
	s.d.	24.380	17.536